3,198 research outputs found

    Exploration of Pluto: Search for Applicable Small Satellite Technology

    Get PDF
    Pluto is the last known planet in our Solar System awaiting spacecraft reconnaissance. In its eccentric orbit taking it 50 AU from the Sun, Pluto presently has a thin atmosphere containing methane, which is projected to collapse back to the icy planet\u27s surface in about three decades, following Pluto\u27s 1989 perihelion pass at 30 AU. Based on ground and Earth-orbit-based observing capabilities limited by Pluto\u27s small size and extreme distance, present top-priority scientific questions for the first mission concern Pluto and Charon\u27s surface geology, morphology and composition, and Pluto\u27s neutral atmosphere composition. Budgetary realities preclude a large, many-instrument flyby spacecraft, while distance and launch energy requirements preclude any but the smallest orbiter using presently available launch vehicles and propulsion techniques. A NASA sponsored Pluto Mission Development activity began this year at the Jet Propulsion Laboratory. The Pluto Fast Flyby (PFF) tentative mission baseline utilizes two 125-160 kg spacecraft launched in 1998-99 aboard Titan IV(SRMU)/Centaurs or Protons on 7-10 year direct trajectories to Pluto. Instruments are likely to include a CCO imaging camera combined with an infrared spectrometer, plus an ultraviolet spectrometer. An ultra-stable oscillator is to be added to the telecommunications subsystem for radio occultation measurements. Solid state memory stores data during the brief encounter. to be played back over several months. Cost is the primary design driver with major tradeoffs between spacecraft development, launch services, radioisotope thermoelectric generator procurement and launch approval, and mission operations. Significant benefits are apparent from incorporating small satellite technologies from Earth orbiters, with a primary challenge to upgrade component lifetimes consistent with mission duration. The Pluto Team is presently identifying hardware, software and experience from the small satellite community and elsewhere which will be helpful in implementing the Pluto Fast Flyby mission within stringent cost, lifetime and performance constraints. The desired technology flight qualification date is 1994

    Tropical forcing of the Summer East Atlantic pattern

    Get PDF
    The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave

    Factors Influencing the Seasonal Predictability of Northern Hemisphere Severe Winter Storms

    Get PDF
    We investigate the role of the tropics, the stratosphere, and atmosphere‐ocean coupling for seasonal forecasts of strong, potentially damaging, Northern Hemisphere extratropical winter wind storm frequencies. This is done by means of relaxation experiments with the European Centre for Medium‐Range Weather Forecasts model, which allow us to prescribe perfect forecasts for specific parts of the coupled atmosphere‐ocean system. We find that perfect predictions of the Northern Hemisphere stratosphere significantly enhance winter storm predictive skill between eastern Greenland and Northern Europe. Correct seasonal predictions of the occurrence of stratospheric sudden warmings play a decisive role. The importance of correctly predicting the tropics and of two‐way atmosphere‐ocean coupling, both for forecasting stratospheric sudden warming risk and, correspondingly, severe winter storm frequency, is noted
    • 

    corecore